- 1) What is the midpoint of CD if it's endpoints are C(-8, -7) and D(2, 3)? - 2) What is the distance between the points (-5, 4) and (5, 9)? Express you answer in simplest radical form. - 3) If two sides of a triangle are 8 and 4, is it possible for the third side to be 18? Explain. - 4) In the diagram below, transversal TU intersects PQ and RS at V and W, respectively. If $\mathbf{m} \angle TVQ = 5x - 22$ and $\mathbf{m} \angle VWS = 3x + 10$, for which value of x is $PQ \parallel RS$? - 5) If the vertices of $\triangle ABC$ are A(-2,4), B(-2,8), and C(-5,6), can we classify $\triangle ABC$ as scalene? Explain. - 6) In $\triangle PQR$, PQ = 8, QR = 12, and RP = 13. List the angles of $\triangle PQR$ in order from least to greatest. - 7) In the diagram below, $\ell \parallel m$ and $\overline{QR} \perp \overline{ST}$ at R. If $m\angle 1 = 63$, find $m\angle 2$. 8) In the diagram below of $\triangle ABC$ with side \overline{AC} extended through D, $\mathbf{m}\angle A=37$ and $\mathbf{m}\angle BCD=117$. Find the measure of Angle B. Which side of $\triangle ABC$ is the longest side? Justify your answer. (Not drawn to scale) 9) The angles of triangle ABC are in the ratio of 8:3:4. What is the measure of the smallest angle? | Name: | Period: | Spring Break Packet | |---|------------------------------------|---------------------| | 10) Can the following set of lengths repres | sent the sides of a right triangle | e? Why or why not? | {16, 63, 65} 11) Given the theorem, "The sum of the measures of the interior angles of a triangle is 180° ," complete the proof for this theorem. Given: $\triangle ABC$ Prove: $m\angle 1 + m\angle 2 + m\angle 3 = 180^{\circ}$ Fill in the missing reasons below. | Statements | Reasons | |---|-----------| | (1) △ABC | (1) Given | | (2) Through point C , draw \overrightarrow{DCE} parallel to \overrightarrow{AB} . | (2) | | (3) $m \angle 1 = m \angle ACD$, $m \angle 3 = m \angle BCE$ | (3) | | (4) $m\angle ACD + m\angle 2 + m\angle BCE = 180^{\circ}$ | (4) | | (5) m∠1 + m∠2 + m∠3 = 180° | (5) | 12) What is an equation that represents the line that is perpendicular to 2y = x + 2 and passes through the point (4,3)? 13) In the diagram below of ΔGJK , H is a point on \overline{GJ} , $\overline{HJ} \cong \overline{JK}$, $\mathbf{m}\angle G = \mathbf{28}$, and $\mathbf{m}\angle GJK = \mathbf{70}$. Determine whether ΔGHK is an isosceles triangle and justify your answer. 14)Jim is experimenting with a new drawing program on his computer. He created quadrilateral *TEAM* with coordinates T(-2,3), E(-5,-4), A(2,-1), and M(5,6). Jim believes that he has created a rhombus but not a square. Prove that Jim is correct. [The use of the grid is optional.] In the coordinate plane, the vertices of $\triangle RST$ are R(6,-1), S(1,-4), and T(-5,6). Prove that $\triangle RST$ is a right triangle. [The use of the set of axes on the next page is optional.] 15) | Name: | | | |-------|--|--| | | | | Spring Break Packet 16) Given: Quadrilateral ABCD is a parallelogram with diagonals \overline{AC} and \overline{BD} intersecting at E Prove: $\triangle AED \cong \triangle CEB$ 17) After a reflection over a line, $\triangle A'B'C'$ is the image of $\triangle ABC$. Explain why triangle ABC is congruent to triangle A'B'C'. 18) In the diagram below of circle O, the area of the shaded sector AOC is 12π in and the length of \overline{OA} is 6 inches. Determine and state $m \angle AOC$.